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a b s t r a c t

We consider a class of diffusion problems defined on simple graphs in which the popula-
tions at any two vertices may be averaged if they are connected by an edge. The diffusion
polytope is the convex hull of the set of population vectors attainable using finite sequences
of these operations. A number of physical problems have linear programming solutions
taking the diffusion polytope as the feasible region, e.g. the free energy that can be removed
from plasma using waves, so there is a need to describe and enumerate its extreme points.
We review known results for the case of the complete graph Kn, and study a variety of
problems for the path graph Pn and the cyclic graph Cn. We describe the different kinds of
extreme points that arise, and identify the diffusion polytope in a number of simple cases.
In the case of increasing initial populations on Pn the diffusion polytope is topologically an
n-dimensional hypercube.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Consider a discrete-time conservative diffusion process on a graph. By this we mean a connected, simple graph G with
vertices {Vi}

n
i=1, a set of initial ‘‘populations’’ {ρi}

n
i=1 at the vertices, and a set of rules that can be applied at each time step,

with the understanding that the rules in some sense diffuse, or spread out the populations, while conserving the total
∑

iρi.
So, for example, in classical diffusion [1,2], at each time step the populations at all the vertices are updated simultaneously
via the rule

ρi → ρi + h
∑

j

(ρj − ρi) i = 1, . . . , n,

where h is a positive constant and the index j runs over the neighbors of vertex i.
Chip firing games on graphs are specified in a similar fashion. At each time step the (integer) population at a vertex is

reduced by n, the degree of vertex i, and the population at each of i’s neighbors is incremented by 1 [3]. Sandpile models,
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in which vertices accumulate population until reaching a threshold and ‘toppling,’ thereby transferring population to other
nodes, follow similar rules [4,5].

In this paperwewill examine a diffusion process inwhich at each time step, the populations at any two vertices connected
by an edge can be averaged. In some generality, for many reasonable sets of rules, there will a bounded set of attainable
population vectors inRn. In various applicationswemay be interested in extremizing some linear function of the populations∑

iwiρi, and to do this (using a linear programming approach) we need to identify the closure of the convex hull of the set
of attainable population vectors. We call this the diffusion polytope of the diffusion process (associated with the graph G,
the relevant sent of rules and the initial set of populations). In some sense the diffusion polytope measures the diversity of
behavior that can be attained in the diffusion process. (We emphasize that the diffusion processes we consider in this paper
are limited to those described, as above, by a set of rules, leading to a finite, or at least bounded, set of accessible states. This
does not include typical stochastic diffusion processes, in which extreme states are in principle accessible, albeit with very
small probabilities.)

Our motivation comes from plasma physics. There is a class of diffusion problems associated with opportunities in
extracting energy in plasma with waves. Waves can be injected into a fusion reactor such that high energy alpha particles,
the byproducts of the fusion reaction, lose energy to the waves, as those alpha particles are diffused by the waves to lower
energy [6–8]. The extra energy in the waves can then be used, for example, to increase the reactivity of the fuel or to drive
electric current [9–11]. Choosing the correct sequence of waves to extract as much energy as possible is an optimization
problem on a graph of the type described above. Because the wave–particle interaction is diffusive [12], particles in a given
location in the 6D phase space of velocity and position are randomlymixed by the wave with particles in another location in
the 6D phase space. A graph encodes the connectedness of the phase space; each node denotes a volume element in phase
space, and an edge between two nodes indicates that those two volume elements may be mixed. Wave-induced diffusion
follows a path in the 6D phase space corresponding to an edge in the associated graph. If there is a population inversion in
energy along the path, then the diffusive process releases energy. If there is only one wave and a specified diffusion path,
the amount of extractable energy can be readily calculated. However, more energy can be extracted when several waves are
employed [13,14]. Whenmany diffusion paths are possible, it turns out that the order in which these paths are taken affects
the energy that can be extracted. We reach the situation described above, of a range of possible population distributions on
the nodes. (The number of particles the total population is conserved, energy is extracted by moving particles from nodes
of high energy to nodes of low energy.) Determining the maximum amount of extractable energy under the constraint that
the particle distribution function evolves only due to diffusion reduces to a linear programming problem on the diffusion
polytope, the convex hull of all attainable population vectors, and we are concerned with identifying its extreme points and
the edge sequences that give rise to these extreme points.

Arguably the simplest case of this diffusion problem is to allow, at every step, averaging of the populations at any two
nodes. This is the full-connectivity, or the nonlocal diffusion problem, in which diffusion paths can be constructed between
any two phase space locations, and the relevant graph is the complete graph Kn (see Fig. 1). In the context of plasma, there are
physical reasons why this arrangement is realizable on amacroscopic scale, despite the restriction of diffusion to contiguous
regions of phase space on themicroscopic scale [15]. In this case the diffusionpolytope, and themaximumenergy extractable,
or what we call the free energy, have been described previously [16]. The same optimization problem has been discussed in
other fields, in the context of attainable states in chemical reactions and thermal processes [17,18], and in the context of
altruism and wealth distribution [19].

However in all these settings, there are arguments to restrict the connectivity. In the context of plasma, possible reasons
for restriction include that waves can only diffuse particles from one phase space position to a contiguous position, or
between pairs of states determined by selection rules. In the case of such a local diffusion problem, the free energy will be
less, because there are fewer ways in which the energy might be released. As the simplest example of such a local diffusion
problemwe study diffusion when the connectivity is restricted from that of Kn to that of the path graph Pn (see Fig. 1). In the
context of altruism, the effects of other (retrospective) restrictions on the connectivity have also been studied [20].

The path graph context Pn arises naturally when the 6D phase space is projected to a 1D energy representation, and
only transitions between adjacent energies are allowed. Many physical problems of interest are captured by the model of
contiguity based on energy only. Other network problems can be defined which capture the spatial element [21]. A different
problem on P5 arises in the context of maximizing the possible concentration of atoms in a specific state in an ensemble of
atoms of helium. Fig. 2 shows a truncated level diagram for parahelium (S = 0). Due to level splitting, each energy level
is associated with a unique energy. We suppose processes are available which can mix levels joined by a dipole transition
(such as spatially incoherent light at the appropriate frequency). For example, it is possible to average the number of atoms
in 2s and 3p, but it is not possible to do the same for 2s and 3s. Thus four operators are allowed in this five-level system,
1s ↔ 2p, 1s ↔ 3p, 2s ↔ 3p, 3s ↔ 2p. We gain a clearer picture by redrawing the energy level diagram of Fig. 2 with vertices
relabeled 1 = 1s, 2 = 2s, 3 = 2p, 4 = 3s, 5 = 3p (so the vertex label indicates the energy rank) to obtain Fig. 3. Thus we
see this also gives a diffusion problem on Pn; however the allowed transitions are not between adjacent energies.

This paper proceeds as follows: In Section 2 we give the precise statement of the diffusionmodel we study, the definition
of the diffusion polytope, and state some elementary facts. In Section 3we review known results for the case of the complete
graph Kn [16–19]. We show that for a general graph, whenever 3 vertices are connected to each other (i.e. form a triangle),
extreme points of the diffusion polytope are obtained only by averaging over the pairs with consecutive populations. This
generalizes a theorem of Thon andWallace for case of the complete graph, and is a key result in characterizing the diffusion
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(a) Nonlocal diffusion: K4 . (b) Local diffusion: P4 .

Fig. 1. Graph representations diffusion problems two four-level systems, K4 and P4 . The marking Bij on an edge indicates that the populations of nodes i
and j can be equalized.

Fig. 2. Truncated parahelium energy level diagramwith all possible electric dipole transitions represented by arrows, ↔. Energy scale is arbitrary. The s–p
splitting is due chiefly to the partially screened Coulomb repulsion of the nucleus (a larger effect in p orbitals vs. s orbitals) [22].

Fig. 3. Graph representation for the diffusion problem on parahelium, cf. Fig. 2. Vertices are labeled by the rank of the corresponding energy eigenvalue
(increasing). The graph is P5 , but the transitions are not between adjacent energy levels.

polytope. In Section 4, we study the diffusion polytope for the path graph Pn. There are different cases depending on the
ordering of the initial populations. In the case n = 3 we describe the solution in all cases, emphasizing the location of
the resulting polytopes inside the K3 polytope, and the different kind of extreme points that arise. In the case of Pn with
ordered initial populations we show the diffusion polytope is topologically an (n − 1)-dimensional hypercube with 2n−1

vertices. Whereas the extreme points of the Kn nonlocal problem can all be constructed by
( n
2

)
or fewer level mixings, some

extreme points in the Pn local problem are only reachable by an infinite sequence of operations. Curiously, the number
extreme points in the Pn local problem that are inherited from the nonlocal problem is a Fibonacci number, and the number
of operations required to reach them is at most ⌊n/2⌋. Section 5 extends the analysis to diffusion on the cycle graph Cn, again
focusing on the new types of extreme points that become available. We summarize in Section 6, and present open questions
concerning more physically relevant graphs, and connections between ideas presented in this paper and other notions in
modern network theory.
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2. The diffusion model

The diffusion model studied in this paper is as follows: We are given a connected, simple graph G with vertices {Vi}
n
i=1,

and a set of initial populations {ρi}
n
i=1 at the vertices. We assume without loss of generality that the population vector

ρ = (ρ1, ρ2, . . . , ρn) is normalized:
∑

iρi = 1.
To any edge in G we associate an operator. If the edge connects vertices Vi and Vj we indicate this operator Bij, and this

acts on the populations at the vertices i and j via

Bij : (ρi, ρj) →

(
1
2
(ρi + ρj),

1
2
(ρi + ρj)

)
while leaving the populations at all the other vertices unchanged.

We can write Bij =
1
2

(
I + Qij

)
where Qij is the operator that permutes the populations at the i’th and j’the vertices. In

greater generality we could consider the action of operators Bij;α = (1 − α)I + αQij for all α ∈ [0, 1
2 ]. This is the case

in which ‘‘partial relaxation’’ is allowed as well as full relaxation. However, since we will only consider the convex hull of
the population vectors generated by the Bij, it is clear that this does not make any difference. However, it is important to
distinguish between the cases of 0 ≤ α ≤ 1/2 and 1/2 < α ≤ 1; the latter case corresponds to inversion of populations,
and are not allowed.

We assume we are given an objective function f =
∑

iwiρi which is to be extremized over the set A(ρ0) of attainable
states, i.e. populations generated by finite sequences of the operators Bij from the initial population vector ρ0. The weights
wi are taken to be all positive and distinct. Without loss of generality we can assume either w1 < w2 < · · · < wn or that the
components of ρ0 satisfy ρ1 ≤ ρ2 ≤ · · · ≤ ρn. Due to the linearity of f , this problem has a linear programming solution on
DP = ch (A(ρ0)), the closure of the complex hull of K (ρ0). We call this the diffusion polytope of the problem; it is determined
by the graph G and the initial population vector ρ0.

Since we have assumed G is connected, the uniform population ρ =
( 1
n ,

1
n , . . . ,

1
n

)
is in DP . (To prove this, observe that

the quantity maxi,j(ρi − ρj) is a strictly decreasing function under the application of the averaging operations, and it cannot
have a non-zero minimum.)

Another immediate property of DP is that if the graph G′ can be obtained from G by deletion of one or more edges (while
still staying connected) then DP(G′) ⊆ DP(G). Here the assumption is that we start with the same population vector on both
G and G′. However, since G′ has less edges, the set of attainable states is smaller compared to that for G (and in the plasma
setting the free energy is reduced). Thus the diffusion polytope of every graph with n vertices is a subset of the diffusion
polytope for Kn. Reducing the connectivity will restrict the diffusion polytope. This gives, for example, a way to identify
‘‘important’’ edges in a graph, as edges whose elimination causes a significant restriction diffusion polytope, or to define
robustness of a network in terms of how the diffusion polytope responds to removal of edged, c.f. Refs. [23,24].

3. Diffusion on Kn: nonlocal diffusion

For the case of Kn, the case of nonlocal diffusion, Ref. [19] presented a recursive algorithm to identify the extreme
points of the diffusion polytope by applying different sequences of the Bij. It was noted in Ref. [16] that this algorithm
generates reduced (minimal length) decompositions of the elements in the symmetric group Sn [25]. That is, the algorithm
identifies every possibleminimum-lengthway to generate each of then!permutations of a length-nwordusing only adjacent
transpositions σi = (i i+1). It turns out that the nonlocal extreme points are in bijectionwith equivalence classes of reduced
decomposition, the equivalence classes being the sets of reduced decompositions obtainable from each other by the applying
the commutation relation σiσj = σjσi, |i − j| > 1 [26].

It was noted that ‘dead ends’ exist among the possible sequences of diffusion operations, where a state is reached with
level densities decreasingwith level energy, such that nomore energy can be extracted. Any such stopping state has the level
population permutation which is the reverse of the energy level permutation. For example, given w = (w1, w2, w3) with
w2 < w1 < w3 ∼ {2, 1, 3}, the stopping permutation is {3, 1, 2}, such that ρ3 ≤ ρ1 ≤ ρ2.

In order to identify the extremal sequence of diffusion operations resulting in a minimum-energy state, it is generally
necessary to evaluate the objective function for each inequivalent reduced decomposition of the stopping permutation. For
the worst-case reverse permutation, there are a large number of states to check [27]. We emphasize that each extreme
point in the nonlocal problem is associated with a finite sequence of diffusion operations, with the limiting words being the
identity (length 0) and the reverse permutation (length

( n
2

)
).

Finally, all extremal sequences result in a monotone trend in the objective function: in our plasma example, we can
exclude from consideration any operations which absorb energy from the injected waves.

A significant tool for these resultswas Prop.2 in Ref. [19] and this has an extension to the diffusion problemon an arbitrary
graph. Suppose the 3 vertices Vi, Vj, Vk form a triangle, i.e. that there are edges between the 3 possible pairs of these three
vertices. Assumewithout loss of generality that ρi < ρj < ρk. Then no extreme point can be obtained by immediate application
of Bik. In other words, in any triangle, extreme points can only generated by averaging pairs with adjacent populations. This
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fact follows from two following simple identities:⎛⎜⎜⎜⎝
1
2

0
1
2

0 1 0
1
2

0
1
2

⎞⎟⎟⎟⎠
(a
b
c

)

= λ1

⎛⎜⎜⎜⎜⎜⎝
1
3
1
3
1
3

⎞⎟⎟⎟⎟⎟⎠+ (1 − λ1)

⎛⎜⎜⎜⎝
1
2

0
1
2

0 1 0
1
2

0
1
2

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
1 0 0

0
1
2

1
2

0
1
2

1
2

⎞⎟⎟⎟⎠
(a
b
c

)

= λ2

⎛⎜⎜⎜⎜⎜⎝
1
3
1
3
1
3

⎞⎟⎟⎟⎟⎟⎠+ (1 − λ2)

⎛⎜⎜⎜⎝
1
2

0
1
2

0 1 0
1
2

0
1
2

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1
2

1
2

0

1
2

1
2

0

0 0 1

⎞⎟⎟⎟⎠
(a
b
c

)
.

Here it is assumed that a < b < c and a + b + c = 1, and

λ1 =
3(c − b)

b + c − 2a
and λ2 =

3(b − a)
2c − a − b

,

so

1 − λ1 =
2(2b − a − c)
b + c − 2a

and 1 − λ2 =
2(a + c − 2b)
2c − b − a

.

If a + c ≤ 2b then 0 ≤ λ1 ≤ 1, and the first identity says that the population obtained by application of Bik is a convex
combination of the population obtained by averaging all three populations at Vi, Vj, Vk, with the population obtained by
application of first Bjk and then Bik. The latter two populations may or may not be extreme points of DP; but they are both in
DP , and thus the population obtained by immediate application of Bik is certainly not an extreme point. If a + c > 2b then
0 ≤ λ2 ≤ 1 and the second identity is relevant, and the population obtained by immediate application of Bik is a convex
combination of the population obtained by full averaging, with that obtained by first applying Bij and then Bik.

In contrast, the other crucial result for understanding the case of Kn, viz. Prop.3 in Ref. [19], seems to be specific to Kn.

4. Diffusion on Pn: local diffusion

Throughout our discussion of the Pn case we assume without loss of generality that ρ1 ≤ ρ2 ≤ · · · ≤ ρn.
For n = 3 there are three distinct cases to consider, when the allowed operators are (a) B12, B23, (b) B12, B13, (c) B13, B23.

Fig. 4 compares the diffusion polytopes in the three different cases with that of K3, in the case ρ0 = (0, 2/7, 5/7).
The extreme points in the case K3 are ρ0, ρ0B12, ρ0B23, ρ0B12B13, ρ0B23B13, ρ0B12B13B23, ρ0B23B13B12. Writing ρ̄ =( 1

3 ,
1
3 ,

1
3

)
, the extreme points in the three P3 cases are

• ρ0, ρ0B12, ρ0B23, ρ̄.
• ρ0, ρ0B12, ρ0B12B13, ρ̄.
• ρ0, ρ0B13, ρ0B23, ρ0B13B23, ρ0B23B13.

Note first that anyK3 extreme point that can be attained in any of the P3 cases is an extreme point in that case.We call such
points ‘‘nonlocal extreme points’’ (of the local problem), as they are inherited form the nonlocal problem. However, there
are also new extreme points. In the first two cases the point ρ̄ is added. This is a limit point of the attainable populations — it
cannot be attained by application of a finite sequence of the Bij operators; we call such points ‘‘asymptotic extreme points’’.
In the third case there are new extreme points that can be attained by application of a finite sequence of the Bij, however
these are not extreme points for the nonlocal K3 case. In more general local diffusion problems all three kinds of extreme
points coexist — nonlocal extreme points inherited from Kn, asymptotic extreme points (which do not appear in the case Kn)
and other extreme points generated by finite sequences of operations that are not inherited from Kn.

In the case Pn in which the allowed operators are B12, B23, . . . , Bn−1,n the diffusion polytope can be identified explicitly.
In the appendix, we prove that there are 2n−1 extreme points in bijection with the power set of {1, 2, . . . , n − 1}. It follows
that the diffusion polytope is topologically an (n − 1)-dimensional hypercube [28]. Any extreme point corresponding to a
subset A ⊆ {1, 2, . . . , n− 1} is connected (by edges, forming the 1-skeleton of the hypercube) to n− 1 other extreme points
corresponding to the n − 1 subsets that differ from A in just one element. Fig. 5 illustrate the 3-cube hull for the four-level
problem.
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(a) B12, B23 allowed (P3). (b) B12, B13 allowed. (c) B13, B23 allowed.

Fig. 4. Comparison of polytopes for K3 , P3 , and two other restricted graphs for initial data ρ0 = (0, 2/7, 5/7), with permitted operators (a) B12, B23 ,
(b) B12, B13 , (c) B13, B23 . All are superimposed on the polytope for K3 . (Due to normalization, the third coordinate is ignorable.)

Fig. 5. Convex hull of a four-level local diffusion problem represented in R3. Extreme points are denoted with red circles.

We ask the question howmany nonlocal extreme points are there in this case? (i.e. how many points are inherited from
the case of the complete graph Kn.) In the case n = 3 there are 3: ρ0, ρ0B12, and ρ0B23 are all extreme points. In the case n = 4
there are 5: ρ0, ρ0B12, ρ0B23, ρ0B34 and ρ0B12B34. In general, the question is how many subsets of commuting operators are
there in {B12, B23, . . . , Bn−1,n}? For n = 4 and n = 5 only commuting 2-tuples are possible. For n = 6, a commuting 3-tuple
appears: (B12, B34, B56). In general, the n-level system contains only k-tuples satisfying k ≤ ⌊n/2⌋.

Clearly, as n grows, the number of commuting k-tuples with k ≤ ⌊n/2⌋ becomes large and direct counting becomes
tedious, if not difficult. Fortunately, a general formula is available. Appropriating the notation of Ref. [29], denote the number
of commuting k-tuples as Ak(n). Recalling that there are n−1 operators Bi,i+1 in the n-level problem, the number of extreme
points for n > 2 levels is

1 + (n − 1) + A2(n) + A3(n) + · · · + A⌊n/2⌋(n), (1)

where the leading 1 corresponds to the initial distribution ρ0.
We can now attack the Ak(n) in turn. Mapping each Bi,i+1 to the symbol i, A2(n) is the number of two-element subsets

of {1, 2, . . . , n − 1} which do not contain consecutive numbers. The total number of two-element subsets is
( n−1

2

)
and the

number of subsets containing consecutive numbers is n − 2. Therefore

A2(n) =

(
n − 1
2

)
− (n − 2) =

1
2
(n − 1)(n − 2) = Tn−3 (2)

where Tn is the nth triangular number (recall that the expression is restricted to n > 2). Proceeding analogously, A3(n) is seen
to correspond to the tetrahedral numbers. In general, Ak(n) can be identifiedwith the set of regular k-polytopic numbers [30].
With the proper offsets, the formula for the number of extreme points for n > 2 is

n +

(
n − 2
2

)
+

(
n − 3
3

)
+ · · · = Fn+1, (3)
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Fig. 6. The cycle graph C4 .

Table 1
Extreme points for the diffusion problem on C4 .

From K4 Shared P4 C4 only

ρ0 ρ0B123 ρ0B123B14
ρ0B12 ρ0B234 ρ0B234B14
ρ0B23 ρ0B123B124
ρ0B34 ρ0B234B134
ρ0B12B34 ρ0B12B34B134
ρ0B12B34B14 ρ0B12B34B124

ρ0B234B14B12
ρ0B123B14B234
ρ0B234B14B123
ρ0B123B23B14B34

where Fn is the nth term of the Fibonacci sequence: 0, 1, 1, 2, 3 . . . with F0 = 0. The identity is the statement that shallow
diagonals of Pascal’s triangle sum to Fibonacci numbers [31]:

⌊n/2⌋∑
k=0

(
n − k
k

)
= Fn+1. (4)

(Note that
( n
0

)
+
( n−1

1

)
= n.)

This result might have been anticipated because there are Fn+2 unique subsets of {1, . . . , n} which do not contain
consecutive numbers [32]. For example, there are three (=F4) such subsets of {1, 2}: {∅, {1}, {2}}. The problem of
enumerating the extreme points is analogous: the n-level system contains n−1 operators, leading to Fn+1 Fibonacci subsets.

The Fibonacci numbers are the solution to a similar problem in graph theory: Fn+1 is the number of matchings in a path
graph with n vertices [33].

Thus the number of nonlocal extreme points in the case of Pn with operators {B12, B23, . . . , Bn−1,n} is Fn+1. Note these
involve at most ⌊n/2⌋ operators (as opposed to up to

( n
2

)
in the case of Kn). All the other extreme points are asymptotic

extreme points, involving averagings over 3 or more states.

5. Diffusion on the cycle graph Cn: nonlocal diffusion

Another possible restriction on the phase space connectivity results in a diffusion problem on the cycle graph Cn, Fig. 6
with allowed operators {B12, B23, . . . , Bn−1,n} as in the case of Pn studied before, and the single extra operator B1,n C3 is
isomorphic to K3 and accordingly has the same diffusion polytopes; C4 is the smallest case with a unique diffusion polytope.

Introducing the notation Bijk for the operation of averaging over populations on the three vertices i, j, k (involving an
infinite sequence of operations), Table 1 lists the 18 extreme points we have found for the C4 diffusion polytope by brute
force computation. We divide the points into 3 categories: those inherited from Kn, those shared with P4 (by this we mean
that these are extreme points for P4 inherited from the C4 case), and all others. In the case of C4, as in the case of Pn that
we solved explicitly, there are only nonlocal extreme points and asymptotic extreme points. We emphasize that in general
there are also points involving a finite sequence of Bij that are not inherited from Kn.

6. Discussion

In this work we have developed a non-standard diffusion model on a graph, explained the reason for looking at the
associated diffusion polytope, and studied this in the cases where the graph is Kn, Pn and Cn. The case of Pn for which we
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Fig. 7. Comparison of minimal energy states for the diffusion problem with initial data ρ0 ∝ (e1, e2, e3, e4) and w = (1, 2, 3, 4). The blue circles label the
level densities for the nonlocal problem (K4), the green diamonds for the case C4 and the yellow squares for the case P4 . Whereas in the nonlocal case the
operations recovered 68% of the Gardner limit [16], the C4 case recovered 63%, and in the P4 case only 50% was recovered.

Fig. 8. Diffusion problem on G = P3[P2].

have given a complete solution and the case of Kn should be regarded as extreme cases. Assuming increasing energy levels
and initial densities, the nonlocal problem requires evaluation of the objective functional at a super-exponential number of
points in the number of levels n, while for the local problem the solution is always the uniform distribution. We show in
Fig. 7 the optimal population distribution with w = (1, 2, 3, 4), ρ0 ∝ (e1, e2, e3, e4) in the cases of K4, P4 (with operators
B12, B23, B34) and C4 (with added operator B14).

Although the diffusion problem on the complete graph is well-characterized, it is difficult to solve. The Pn model is an
oversimplification, but it is possible that not much more complicated models may be useful. Some insight may be gained
into the ‘full’ alpha particle diffusion problem by considering proximity in both position and energy space. As before, edges
correspond to diffusion paths and vertices reference bins associated with the discretization of configuration and energy
space. A particularly simple 2-D diffusion problem in x and ϵ can be visualized as in Fig. 8, on the composition of path graphs
Pm[Pn], m ≥ n, essentially a grid graph with diagonal edges [34]. By judicious choice of the wave phase velocities, diffusion
paths can be established between different parts of the phase space. Moving a particle in energy at constant location could
be accomplished with a wave k → 0, and vice versa, moving a particle without changing its energy with a wave ω → 0. The
slopes of any diagonal diffusion paths are determined by intermediateω/k [13,14]. Such an arrangement is characterized by
degeneracy in both position and energy bins. A practical alpha channeling scheme would seek to maximize the density at a
particular low-energy, large-radius sink node.

In general, one might consider diffusion problems on arbitrary subgraphs of the complete graph for V = {w}, of which
the local problem is one solvable case (the path graph with V = {w}). These other problems will inherit some extreme
points from the complete graph on the same number of vertices and should also have some unique ones depending on the
particular graph structure. There may be rich physical significance for diffusion problems on more or less ‘bottlenecked’
graphs generally (in the sense of Cheeger), or e.g. the wheel graphs, k-regular trees, and complete bipartite graphs.

Our problem may be contrasted with other notions of (deterministic or stochastic) diffusion or spreading on graphs,
for example in the context of spreading of epidemics [35–37], or behavior [38]. In all such settings, the resulting behavior
depends intimately on the character of the underlying graph. For example, disease transmission proceeds more slowly on a
lattice than on small-world [39,40] or scale-free [36,41] networks. Qualitative differences can also be observed in the context
of classical graph diffusion [42].We expect to see similar differences in the context of our problem, though the computational
task of verifying this is formidable.



M.J. Hay et al. / Physica A 473 (2017) 225–236 233

Acknowledgments

It is a pleasure to acknowledge discussions with Mariana Campos Horta. Particular thanks are due to Professor D. Tannor
for critical discussions at an early stage of this work. Work supported by DOE Contract No. DE-AC02-09CH11466 and DOE
NNSA SSAA Grant No. DE274-FG52-08NA28553. One of us (NJF) acknowledges the hospitality of the Weizmann Institute of
Science, where he held a Weston Visiting Professorship during the time over which this work was initiated.

Appendix. The diffusion polytope in the ‘‘ordered’’ case pn

In this appendix we prove the claim from Section 4 concerning the diffusion polytope in the case Pn, with permitted
operators B12, B23, . . . , Bn−1,n. The local state space is the set of states accessible from the initial state ρ0, after an arbitrary
finite sequence of transformations Bi,i+1 has been applied.We claim that the closure of the convex hull of this space has 2n−1

extreme points in bijection with the power set of {1, 2, . . . , n − 1}. Denote these points SA, where the index A runs over all
subsets of {1, 2, . . . , n − 1}.

The bijection has a simple description. The empty set∅ corresponds to the initial state ρ0. The point SA corresponding to
the set A has the property that for each i ∈ A the ith and (i+1)th components of SA are equal, and its components are obtained
by averaging over subsets of components of ρ0. So, for example, in a seven-level system, S{1,2,3,6} is the point (x, x, x, x, y, z, z)
where x is the average of the first four components ofρ0, y is the fifth component, and z is the average of the sixth and seventh
components. In greater generality, whenever A contains a sequence of k consecutive integers i, i+ 1, . . . , i+ k− 1 then the
k + 1 components of SA from i to i + k are equal to the average of the corresponding components of ρ0.

Lemma 1. The SA are contained in the closure of the local state space.

Proof. Fix a subset A ⊆ {1, 2, . . . , n−1} corresponding to a particular SA. Suppose i, i+1, . . . , i+k−1 is amaximal sequence
of k consecutive integers in A, i.e. all these are in A, but i − 1 and i + k are not, and consider the quantity ρi+k − ρi. This is
non-negative, and, if it is non-zero, strictly decreases when the operator Bi+k−1,i+k . . . Bi+1,i+2Bi,i+1 is applied to the state ρ.
Furthermore it is unchanged when the corresponding operator for a different maximal sequence of consecutive integers is
applied to ρ. It follows that by repeated application of such operators the initial state ρ0 can be brought arbitrarily close to
the extreme point SA. Thus the points SA are in the closure of the local state space. □

Lemma 2. No point SA can be written as a nontrivial convex combination of the others.

Proof. Consider a convex combination
∑

aASA, with aA ≥ 0 and
∑

aA = 1. Let ρA,i denote the component densities of the
point SA. Suppose

∑
aASA = S, with densities ρi. Because an arbitrary sequence of local operators Bi,i+1 cannot achieve a

population inversion, we have ρA,i ≤ ρA,i+1 for all A and i. Therefore ρi = ρi+1 if and only if ρA,i = ρA,i+1 for all Awith aA > 0.
Thus any convex combination yielding the point S has only one summand, S itself. □

Lemma 3. Any point in the local state space can be written as a convex combination of the SA.

Proof. Wewish to show that every accessible state ρ can be written as a convex combination of the extreme points, i.e. that
we can write

ρ =

∑
A

λASA , where λA ≥ 0 ,
∑
A

λA = 1.

Every accessible state can be obtained by applying an arbitrary finite sequence of Bi,i+1 to the initial state ρ0 = S∅. We
proceed by induction on the number of Bi,i+1 operators to be applied. To prove the inductive step it is necessary to check
that for every A and for every i, SABi,i+1 can be written as a convex combination of extreme points. If i ∈ A, then SABi,i+1 = SA
is an extreme point. If i ̸∈ A then the i’th and (i + 1)’th components of SA may be different. SA then takes the form

(. . . , x, . . . , x, x, y, y, . . . , y, . . .)

where there is a string of k > 0 x’s ending in the i’th position and a string of l > 0 y’s starting in the (i + 1)’th position. The
entries on the left of the string of x’s and on the right of the string of y’s remain fixed and identical for all the points that
appear in the forthcoming calculation, and thus do not play any role. It is assumed that the entry immediately on the left of
the x’s (if there is such) is strictly less than x, and the entry immediately on the right of the y’s (if it exists) is strictly greater
than y.

Applying Bi,i+1 we have

SABi,i+1 =

(
. . . , x, . . . , x,

x + y
2

,
x + y
2

, y, . . . , y, . . .
)

where now the strings of x’s and y’s are of length k − 1 and l − 1 respectively. It should be emphasized that except in the
case k = l = 1 this is not an extreme point, as although the values in the i’th and (i+ 1)’th positions are equal, they have been
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determined by components of the initial density ρ0 from outside these positions, and full averaging over the relevant subset
has not been achieved. However we will now show it is a convex combination of four extreme points of the following form:

S1 = (. . . , X, . . . , X, X, X, X, . . . , X, . . .), with k + l X ’s,
S2 = (. . . , X1, . . . , X1, X1, X1, Y1, . . . , Y1, . . .), with k + 1 X1’s and l − 1 Y1’s,
S3 = (. . . , X2, . . . , X2, Y2, Y2, Y2, . . . , Y2, . . .), with k − 1 X2’s and l + 1 Y2’s, and
S4 = (. . . , X2, . . . , X2, Z, Z, Y1, . . . , Y1, . . .), with k − 1 X2’s and l − 1 Y1’s.

(These four points are only distinct on the assumption k, l > 1. The cases k = l = 1, k = 1, l > 1, and k > 1, l = 1 should be
considered separately but are simpler — in particular in the case k = l = 1 all four points coincide and the resulting point is
extreme. We omit the details of the cases k = 1, l > 1 and k > 1, l = 1.) The quantities x, y, X, X1, Y1, X2, Y2, Z appearing
here are not independent, as they are obtained from averaging over certain entries of ρ0. Denote the average value of entries
i−(k−1), . . . , i−1 of ρ0 as R1, the value of entry i as R2, the value of entry i+1 as R3 and the average of entries i+2, . . . , i+ l
as R4. Then

x =
(k − 1)R1 + R2

k

y =
R3 + (l − 1)R4

l

X =
(k − 1)R1 + R2 + R3 + (l − 1)R4

k + l

X1 =
(k − 1)R1 + R2 + R3

k + 1
Y1 = R4

X2 = R1

Y2 =
R2 + R3 + (l − 1)R4

l + 1

Z =
R2 + R3

2
.

Our aim is to find λ1, λ2, λ3, λ4 ≥ 0 such that

SABi,i+1 =

4∑
i=1

λiSi and
4∑

i=1

λi = 1.

Solving these linear equations gives three constraints between the λi, which can be written in the form

λ1 = C1λ4 + D1

λ2 = C2λ4 + D2

λ3 = C3λ4 + D3

where C1, C2, C3,D1,D2,D3 are complicated expressions involving k, l and R1, R2, R3, R4. Explicitly we have

C1 =
(p2 + 2 p3) (p2 + 2 p1) (k + l)
2 ((k − 1)p1 + kp2 + (k + 1)p3)

×
1

(l + 1)p1 + lp2 + (l − 1)p3

C2 = −
(p2 + 2 p3) (k + 1)

2 ((k − 1)p1 + kp2 + (k + 1)p3)

C3 = −
(p2 + 2 p1) (l + 1)

2 ((l + 1)p1 + lp2 + (l − 1)p3)

where

p1 = R2 − R1

p2 = R3 − R2

p3 = R4 − R3.

Since R1 ≤ R2 ≤ R3 ≤ R4 we have pi ≥ 0 and thus C1 > 0 and C2, C3 < 0. Thus for nonnegativity of the λi we need

max
(
0, −

D1

C1

)
≤ λ4 ≤ min

(
−

D2

C2
, −

D3

C3

)
. (A.1)
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The explicit expressions for −
D1
C1

, −
D2
C2

, −
D3
C3

are

−
D1

C1
=
(
(k − 1)lp1p2 + klp22 + k(l − 1)p2p3 − 2(l + k)p1p3

)
×

1
(p2 + 2 p3) (p2 + 2 p1) kl

−
D2

C2
=

(k − 1)lp1 + klp2 + k(l − 1)p3
(p2 + 2p3) kl

−
D3

C3
=

(k − 1)lp1 + klp2 + k(l − 1)p3
(p2 + 2p1) kl

.

Evidently −
D2
C2

, −
D3
C3

> 0. To see the inequalities (A.1) can be satisfied we simply observe that

−
D2

C2
−

(
−

D1

C1

)
=

2p1 ((k − 1)p1 + kp2 + (k + 1)p3)
k (p2 + 2p3) (p2 + 2p1)

> 0

−
D3

C3
−

(
−

D1

C1

)
=

2p3 ((l + 1)p2 + lp2 + (l − 1)p3)
l (p2 + 2p3) (p2 + 2p1)

> 0.

Thus both quantities on the rightmost side of (A.1) are greater than both quantities on the leftmost side and thus the
inequalities (A.1) can always be satisfied. Note that the quantity −

D1
C1

is of indeterminate sign. When it is negative it is
possible to take λ4 = 0 and thus write SABi,i+1 as a convex combination of just three extreme points. However, in general,
four are needed. □

Theorem 1. The closure of the convex hull of the local state space has 2n−1 extreme points in bijection with the power set of
{1, 2, . . . , n − 1}.

Proof. By Lemma 1, the SA are all contained in the closure of the local state space and thus in the closure of its convex hull.
Thus the convex hull of the points SA is contained in the closure of the convex hull of the local state space. By Lemma 2, no
point SA can be expressed as a nontrivial convex combination of the others. Thus the convex hull of the points SA has all the
2n−1 points SA as extreme points. By Lemma 3, any point in the local state space can be expressed as a convex combination
of the SA. Thus the local state space is contained in the convex hull of the points SA, which is a closed convex set, so must
therefore also contain the closure of the convex hull of the local state space. Combining these results we conclude that the
closure of the convex hull of the local state space can be identified with the convex hull of the points SA and these are a
complete set of extreme points. □
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